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0. INTRODUCTION
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Basic definitions

Consider a mapping (map) T : M→ M defined by a function f

ζn+1 = f (ζn), ζi ∈ M.

Manifold M can be Rn, Cn, Sn, Tn, etc..

The trajectory of ζ0 is the finite set{
ζ0,T(ζ0),T2(ζ0), . . . ,Tn(ζ0)

}
The orbit of ζ0, is a set of all points that can be reached{

. . . ,T−2(ζ0),T−1(ζ0), ζ0,T(ζ0),T2(ζ0), . . .
}

The n-cycle (or periodic orbit of period n) is a solution of

Tn(ζ0) = ζ0
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Symplectic mappings of the plane

We will consider area-preserving mappings of the plane

q′ = q′(q, p),
p′ = p′(q, p),

det

[
∂ q′/∂ q ∂ q′/∂ p
∂ p′/∂ q ∂ p′/∂ p

]
= 1.

Identity, Id[
1 0
0 1

] Rotation, Rot[
cos θ − sin θ
sin θ cos θ

] Reflection∗,∗∗, Ref[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
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Integrable systems

A map T in the plane is called integrable, if there exists a non-
constant real valued continuous functions K(q, p), called integral,
which is invariant under T:

∀ (q, p) : K(q, p) = K(q′, p′)

where primes denote the application of the map, (q′, p′) = T(q, p).

Example: Rotation transformation

Rot(θ) : q′ = q cos θ − p sin θ
p′ = q sin θ + p cos θ

has the integral K(q, p) = q2 + p2.
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McMillan form of the map

McMillan considered a special form of the map

M : q′ = p,
p′ = −q + f (p),

where f (p) is called force function (or simply force).

a. Fixed point

p = q ∩ p =
1

2
f (q).

b. 2-cycles

q =
1

2
f (p) ∩ p =

1

2
f (q).
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1D accelerator lattice with thin nonlinear lens, T = F ◦M

M :

[
y
ẏ

]′
=

[
cos Φ + α sin Φ β sin Φ
−γ sin Φ cos Φ− α sin Φ

] [
y
ẏ

]
,

F :

[
y
ẏ

]′
=

[
y
ẏ

]
+

[
0

F (y)

]
,

where α, β and γ are Courant-Snyder parameters at the thin lens
location, and, Φ is the betatron phase advance of one period.

Mapping in McMillan form after CT to (q, p), T = F̃ ◦ Rot(−π/2)

q = y ,
p = y (cos Φ + α sin Φ) + ẏ β sin Φ,

F̃(q) = 2 q cos Φ + β F (q) sin Φ .
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Example 1: Standard map/Chirikov-Taylor map/Chirikov
standard map (f = cos p)

∆En+1 = ∆En + e V (sinφn − sinφs)

φn+1 = φn + 2π h η
β2 E

∆En+1
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Example 2: Hénon quadratic map (f = p2)
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Turaev theorem
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1.PERTURBATION THEORY
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Consider a map in McMillan form:

T : q′ = p,

p′ = −q + f (p),

where function f (p) is of the class C∞ and will be referred to as a
force function, or simply force.

In order to construct a perturbation theory, we shall introduce a small
positive parameter ε characterizing the amplitude of oscillations. It
can be done using a change of variables (q, p)→ ε (q, p):

T : q′ = p

p′ = −q + 1
ε f (ε p) = −q + a p + ε b

2! p
2 + ε2 c

3! p
3 + . . . .

where we expanded the force function in a power series of (ε p) and

a ≡ ∂pf (0), b ≡ ∂2pf (0), c ≡ ∂3pf (0), . . . .
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Linearization of map

T : q′ = p

p′ = −q + a p + ε b
2! p

2 + ε2 c
3! p

3 + . . . .

Jacobian of transformation

JT =

[
∂ q′

∂q
∂ q′

∂p
∂ p′

∂q
∂ p′

∂p

]
=

[
0 1
−1 a

]
Courant-Snyder invariant

C.S. = p2 − a p q + q2

Betatron frequency

µ =
1

2π
arccos

a

2
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K(n)(p′, q′)−K(n)(p, q) = O(εn+1)

We seek for an invariant of motion expanded in powers of a small
parameter:

K(n) = K0 + εK1 + ε2K2 + . . .+ εnKn

such that Km are degree (m + 2) polynomials

K0 = C2,0 p
2 + C1,1 p q + C0,2 q

2,
K1 = C3,0 p

3 + C2,1 p
2q + C1,2 p q

2 + C0,3 q
3,

K2 = C4,0 p
4 + C3,1 p

3q + C2,2 p
2q2 + C1,3 p q

3 + C0,4 q
4,

· · · .

Tim Zolkin Canonical perturbation theory for symplectic mappings



Due to the first symmetry, K(q, p) = K(p, q), it is convenient to
introduce the following notations:

Σ = p +q Π = p q C.S. = Σ2− (2 + a) Π = p2− a p q +q2

Then we perform the expansion for even and odd orders of PT as

K0 = C.S.

K1 = A
(1)
1 ΠΣ

K2 = A
(2)
1 Π2 + C (2)C.S.2

K3 = A
(3)
1 Π2Σ + A

(3)
2 ΠΣC.S.

K4 = A
(4)
1 Π3 + A

(4)
2 Π2C.S.+ C (4)C.S.3

K5 = A
(5)
1 Π3Σ + A

(5)
2 Π2ΣC.S.+ A

(5)
3 ΠΣC.S.2

. . .
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Averaging

1. Canonical change of variables to Floquet coordinates

q =
(
1− a2/4

)1/4 √
2 J cos(ϕ) + a

2

(
1− a2/4

)−1/4√
2 J sin(ϕ),

p =
(
1− a2/4

)−1/4√
2 J sin(ϕ),

2. Rewriting the residual in terms of (J, ϕ)

It is periodic function of ϕ, so its average over a full period
vanishes: ∫ 2π

0

[
K(2)(q′, p′)−K(2)(q, p)

]
dϕ = 0.

3. Minimization of the average of the squared residual

I1 =

∫ 2π

0

[
K(2)(q′, p′)−K(2)(q, p)

]2
dϕ

and solve for C1 from d
dC1

I1 = 0
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Approximated invariant for Hénon map

K(3)
sex = C.S.− b

r3
Σ Π ε1 +

(
b2

r3r4
Π2 + C1C.S.

2
)
ε2−

− b
r3

(
b2

r4r5
Σ Π2 −

[
b2

r3r4r5
− 2C1

]
Σ ΠC.S.

)
ε3

〈K(0)
sex〉 = r1r2C.S.

〈K(1)
sex〉 = r1r2r3C.S.− r1r2 Σ Π ε b

〈K(2)
sex〉 = r1r2r3r4C.S.− r1r2r4 Σ Π ε b +

(
r1r2 Π2 + 5

4 C.S.
2
)
ε2b2

〈K(3)
sex〉 = r1r2r3r4r5C.S.− r1r2r4r5 Σ Π ε b +

+r1
(
r2r5 Π2 + P1

P0
C.S.2

)
ε2b2 − r1

(
r2 Σ Π2 + 7 P2

P0
Σ ΠC.S.

)
ε3b3

where
r1 = a− 2 r2 = a + 2 r3 = a + 1

r4 = a r5 = (a + 1+
√
5

2 )(a + 1−
√
5

2 )
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a. Resonance cases (Sextupole on a 1/4 resonance)
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b. Islands (Octupole below 1/4 resonance)
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c. Unstable fixed point (Octupole below 1/2 resonance)
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d. Frequency as a function of amplitude
(Octupole above 1/4 resonance)
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2.DELIVERY RING EXTRACTION FOR Mu2e
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Implementation of Resonant Extraction in the Delivery
Ring for Mu2e
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Tracking with 6 sextupoles
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0-th — 4-th order approximated invariants, K(n)(p, q)
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4-th order vs. tracking
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3.NONLINEAR OPTICAL FUNCTIONS

AND

GENERALIZED COURANT− SNYDER INVARIANT
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Nonlinear optical functions

inv(s) = α(s) p2 + β(s) p q + γ(s) q2︸ ︷︷ ︸
C.S.

+ δ(s) p2 q + ε(s) p q2︸ ︷︷ ︸
sextupoles

+

+ ζ(s) p2 q2︸ ︷︷ ︸
octupoles

+ η(s)C.S.2︸ ︷︷ ︸
2nd order correction

Sextupole and octupole terms are in the form of McMillan
integrable mappings

Estimate of dynamical aperture near 1st, 2nd, 3rd and 4th
order resonances (critical points of the invariant)

Distortion of the ellipse trajectories on larger amplitudes (4,
�, C- or S-shapes)

Amplitude dependent betatron frequency µ(q0, p0)
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Example for Hénon octupole map
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Summary

We developed a very powerful tool for studying discrete
transformations

Relative mathematical simplicity allows higer order analysis

Fast estimate of dynamic aperture and frequency spread
without exact tracking (minimization of losses, brightness
increment etc.)

Optimization of accelerator design or improvement procedure

Analytical and semi-analytical models are helping us to
understand and verify our numerical simulations

Introduction of nonlinear optical functions
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LAST SLIDE

Thank you for your
attention!

Questions?
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